267 research outputs found

    Digit-only sauropod pes trackways from China - evidence of swimming or a preservational phenomenon?

    Get PDF
    For more than 70 years unusual sauropod trackways have played a pivotal role in debates about the swimming ability of sauropods. Most claims that sauropods could swim have been based on manus-only or manus-dominated trackways. However none of these incomplete trackways has been entirely convincing, and most have proved to be taphonomic artifacts, either undertracks or the result of differential depth of penetration of manus and pes tracks, but otherwise showed the typical pattern of normal walking trackways. Here we report an assemblage of unusual sauropod tracks from the Lower Cretaceous Hekou Group of Gansu Province, northern China, characterized by the preservation of only the pes claw traces, that we interpret as having been left by walking, not buoyant or swimming, individuals. They are interpreted as the result of animals moving on a soft mud-silt substrate, projecting their claws deeply to register their traces on an underlying sand layer where they gained more grip during progression. Other sauropod walking trackways on the same surface with both pes and manus traces preserved, were probably left earlier on relatively firm substrates that predated the deposition of soft mud and silt . Presently, there is no convincing evidence of swimming sauropods from their trackways, which is not to say that sauropods did not swim at all

    Abnormal ECG Findings in Athletes: Clinical Evaluation and Considerations.

    Get PDF
    PURPOSE OF REVIEW: Pre-participation cardiovascular evaluation with electrocardiography is normal practice for most sporting bodies. Awareness about sudden cardiac death in athletes and recognizing how screening can help identify vulnerable athletes have empowered different sporting disciplines to invest in the wellbeing of their athletes. RECENT FINDINGS: Discerning physiological electrical alterations due to athletic training from those representing cardiac pathology may be challenging. The mode of investigation of affected athletes is dependent on the electrical anomaly and the disease(s) in question. This review will highlight specific pathological ECG patterns that warrant assessment and surveillance, together with an in-depth review of the recommended algorithm for evaluation

    3D Anastomosed Microvascular Network Model with Living Capillary Networks and Endothelial Cell-Lined Microfluidic Channels

    Full text link
    This protocol describes detailed practical procedures for generating 3D intact and perfusable microvascular network that connects to microfluidic channels without appreciable leakage. This advanced 3D microvascular network model incorporates different stages of vascular development including vasculogenesis, endothelial cell (EC) lining, sprouting angiogenesis, and anastomosis in sequential order. The capillary network is first induced via vasculogenesis in a middle tissue chamber and then EC linings along the microfluidic channel on either side serve as artery and vein. The anastomosis is then induced by sprouting angiogenesis to facilitate tight interconnection between the artery/vein and the capillary network. This versatile device design and its robust construction methodology establish a physiological microcirculation transport model of interconnected perfused vessels from artery to vascularized tissue to vein

    Autism as a disorder of neural information processing: directions for research and targets for therapy

    Get PDF
    The broad variation in phenotypes and severities within autism spectrum disorders suggests the involvement of multiple predisposing factors, interacting in complex ways with normal developmental courses and gradients. Identification of these factors, and the common developmental path into which theyfeed, is hampered bythe large degrees of convergence from causal factors to altered brain development, and divergence from abnormal brain development into altered cognition and behaviour. Genetic, neurochemical, neuroimaging and behavioural findings on autism, as well as studies of normal development and of genetic syndromes that share symptoms with autism, offer hypotheses as to the nature of causal factors and their possible effects on the structure and dynamics of neural systems. Such alterations in neural properties may in turn perturb activity-dependent development, giving rise to a complex behavioural syndrome many steps removed from the root causes. Animal models based on genetic, neurochemical, neurophysiological, and behavioural manipulations offer the possibility of exploring these developmental processes in detail, as do human studies addressing endophenotypes beyond the diagnosis itself

    IL-6 secretion in osteoarthritis patients is mediated by chondrocyte-synovial fibroblast cross-talk and is enhanced by obesity

    Get PDF
    Increasing evidence suggests that inflammation plays a central role in driving joint pathology in certain patients with osteoarthritis (OA). Since many patients with OA are obese and increased adiposity is associated with chronic inflammation, we investigated whether obese patients with hip OA exhibited differential pro-inflammatory cytokine signalling and peripheral and local lymphocyte populations, compared to normal weight hip OA patients. No differences in either peripheral blood or local lymphocyte populations were found between obese and normal-weight hip OA patients. However, synovial fibroblasts from obese OA patients were found to secrete greater amounts of the pro-inflammatory cytokine IL-6, compared to those from normal-weight patients (p < 0.05), which reflected the greater levels of IL-6 detected in the synovial fluid of the obese OA patients. Investigation into the inflammatory mechanism demonstrated that IL-6 secretion from synovial fibroblasts was induced by chondrocyte-derived IL-6. Furthermore, this IL-6 inflammatory response, mediated by chondrocyte-synovial fibroblast cross-talk, was enhanced by the obesity-related adipokine leptin. This study suggests that obesity enhances the cross-talk between chondrocytes and synovial fibroblasts via raised levels of the pro-inflammatory adipokine leptin, leading to greater production of IL-6 in OA patients

    A novel tumor suppressor gene ECRG4 interacts directly with TMPRSS11A (ECRG1) to inhibit cancer cell growth in esophageal carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The esophageal carcinoma related gene 4 (ECRG4) was initially identified and cloned from human normal esophageal epithelium in our laboratory (GenBank accession no.<ext-link ext-link-id="AF325503" ext-link-type="gen">AF325503</ext-link>). ECRG4 has been described as a novel tumor suppressor gene associated with prognosis in esophageal squamous cell carcinoma (ESCC).</p> <p>Methods</p> <p>In this study, binding affinity assay in vitro and co-immunoprecipitation experiment in vivo were utilized to verify the physical interaction between ECRG4 and transmembrane protease, serine 11A (TMPRSS11A, also known as ECRG1, GenBank accession no. <ext-link ext-link-id="AF 071882" ext-link-type="gen">AF 071882</ext-link>). Then, p21 protein expression, cell cycle and cell proliferation regulations were examined after ECRG4 and ECRG1 co-transfection in ESCC cells.</p> <p>Results</p> <p>We revealed for the first time that ECRG4 interacted directly with ECRG1 to inhibit cancer cell proliferation and induce cell cycle G1 phase block in ESCC. Binding affinity and co-immunoprecipitation assays demonstrated that ECRG4 interacted directly with ECRG1 in ESCC cells. Furthermore, the ECRG4 and ECRG1 co-expression remarkably upregulatd p21 protein level by Western blot (P < 0.001), induced cell cycle G1 phase block by flow cytometric analysis (P < 0.001) and suppressed cell proliferation by MTT and BrdU assay (both P < 0.01) in ESCC cells.</p> <p>Conclusions</p> <p>ECRG4 interacts directly with ECRG1 to upregulate p21 protein expression, induce cell cycle G1 phase block and inhibit cancer cells proliferation in ESCC.</p

    5-Hydroxymethylcytosine is a predominantly stable DNA modification.

    Get PDF
    5-Hydroxymethylcytosine (hmC) is an oxidation product of 5-methylcytosine which is present in the deoxyribonucleic acid (DNA) of most mammalian cells. Reduction of hmC levels in DNA is a hallmark of cancers. Elucidating the dynamics of this oxidation reaction and the lifetime of hmC in DNA is fundamental to understanding hmC function. Using stable isotope labelling of cytosine derivatives in the DNA of mammalian cells and ultrasensitive tandem liquid-chromatography mass spectrometry, we show that the majority of hmC is a stable modification, as opposed to a transient intermediate. In contrast with DNA methylation, which occurs immediately during replication, hmC forms slowly during the first 30 hours following DNA synthesis. Isotopic labelling of DNA in mouse tissues confirmed the stability of hmC in vivo and demonstrated a relationship between global levels of hmC and cell proliferation. These insights have important implications for understanding the states of chemically modified DNA bases in health and disease.We would like to acknowledge the CRUK CI Flow Cytometry and Histopathology/ISH core facilities for their contributions, David Oxley, Clive d’Santos and Donna Michelle-Smith for their support with mass spectrometry, Xiangang Zou for his help with mES cells and David Tannahill for critical reading of the manuscript. This work was funded by Cancer Research UK (all authors) and the Wellcome Trust Senior Investigator Award (S.B.).This is the accepted manuscript. The final version is available from Nature Chemistry at http://www.nature.com/nchem/journal/vaop/ncurrent/full/nchem.2064.html

    A Newly Identified Essential Complex, Dre2-Tah18, Controls Mitochondria Integrity and Cell Death after Oxidative Stress in Yeast

    Get PDF
    A mutated allele of the essential gene TAH18 was previously identified in our laboratory in a genetic screen for new proteins interacting with the DNA polymerase delta in yeast [1]. The present work shows that Tah18 plays a role in response to oxidative stress. After exposure to lethal doses of H2O2, GFP-Tah18 relocalizes to the mitochondria and controls mitochondria integrity and cell death. Dre2, an essential Fe/S cluster protein and homologue of human anti-apoptotic Ciapin1, was identified as a molecular partner of Tah18 in the absence of stress. Moreover, Ciapin1 is able to replace yeast Dre2 in vivo and physically interacts with Tah18. Our results are in favour of an oxidative stress-induced cell death in yeast that involves mitochondria and is controlled by the newly identified Dre2-Tah18 complex

    SACK-Expanded Hair Follicle Stem Cells Display Asymmetric Nuclear Lgr5 Expression With Non-Random Sister Chromatid Segregation

    Get PDF
    We investigated the properties of clonally-expanded mouse hair follicle stem cells (HF-SCs) in culture. The expansion method, suppression of asymmetric cell kinetics (SACK), is non-toxic and reversible, allowing evaluation of the cells' asymmetric production of differentiating progeny cells. A tight association was discovered between non-random sister chromatid segregation, a unique property of distributed stem cells (DSCs), like HF-SCs, and a recently described biomarker, Lgr5. We found that nuclear Lgr5 expression was limited to the HF-SC sister of asymmetric self-renewal divisions that retained non-randomly co-segregated chromosomes, which contain the oldest cellular DNA strands, called immortal DNA strands. This pattern-specific Lgr5 association poses a potential highly specific new biomarker for delineation of DSCs. The expanded HF-SCs also maintained the ability to make differentiated hair follicle cells spontaneously, as well as under conditions that induced cell differentiation. In future human cell studies, this capability would improve skin grafts and hair replacement therapies

    Transcriptional regulation of the cinnamyl alcohol dehydrogenase gene from sweetpotato in response to plant developmental stage and environmental stress

    Get PDF
    Cinnamyl alcohol dehydrogenase (CAD) is a key enzyme in the biosynthesis of lignin. We have isolated full length of a cDNA encoding CAD (IbCAD1) that was previously identified as the most abundant gene in an EST library of sweetpotato suspension cells. Phylogenetic analysis revealed that IbCAD1 belongs to the family of defense-related CADs. High levels of IbCAD1 mRNA were found in the roots of sweetpotato, but not in the leaves and petioles. The IbCAD1 gene transcripts were highly induced by cold, wounding, and reactive oxygen species. Analyses of transcriptional regulation of the IbCAD1 gene in transgenic tobacco plants carrying the IbCAD1 promoter–GUS revealed that IbCAD1 promoter expression was strong in the roots, but barely detectable in the cotyledons. IbCAD1 promoter activity increased with increasing root age, and strong promoter expression was observed in the lateral root emergence sites and in root tips. Weak GUS expression was observed in lignified tissues of vascular system of mature leaves and stems. IbCAD1 promoter activity was strongly induced in response to the biotic and abiotic stresses, with the strongest inducer being wounding, and was also induced by salicylic acid (SA) and jasmonic acid (JA) as well as by abscisic acid (ABA) and 6-benzylaminopurine. Taken together, our data suggest that IbCAD1 can be involved in JA- and SA-mediated wounding response and ABA-mediated cold response, respectively. The IbCAD1 gene may play a role in the resistance mechanism to biotic and abiotic stresses as well as in tissue-specific developmental lignification
    corecore